349
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Computational characterization of epitopic region within the outer membrane protein candidate in Flavobacterium columnare for vaccine development

, , , , , & show all
Pages 450-459 | Received 03 Jan 2019, Accepted 03 Feb 2019, Published online: 07 Apr 2019
 

Abstract

Gram-negative bacteria is the main causative agents for columnaris disease outbreak to finfishes. The outer membrane proteins (OMPs) candidate of Flavobacterium columnare bacterial cell served a critical component for cellular invasion targeted to the eukaryotic cell and survival inside the macrophages. Therefore, OMPs considered as the supreme element for the development of promising vaccine against F. columnare. Implies advanced in silico approaches, the predicted 3-D model of targeted OMPs were characterized by the Swiss model server and validated through Procheck programs and Protein Structure Analysis (ProSA) web server. The protein sequences having B-cell binding sites were preferred from sequence alignment; afterwards the B cell epitopes prediction was prepared using the BCPred and amino acid pairs (AAP) prediction algorithms modules of BCPreds. Consequently, the selected antigenic amino acids sequences (B-cell epitopic regions) were analyzed for T-cell epitopes determination (MHC I and MHC II alleles binding sequence) performing the ProPred 1 and ProPred server respectively. The epitopes (9 mer: IKKYEPAPV, YGPNYKWKF and YRGLNVGTS) within the OMPs binds to both of the MHC classes (MHC I and MHC II) and covered highest number of MHC alleles are characterized. OMPs of F. columnare being conserved across serotypes and highly immunogenic for their exposed epitopes on the cell surface as a potent candidate focus to vaccine development for combating the disease problems in commercial aquaculture. The portrayed epitopes might be beneficial for practical designing of abundant peptide-based vaccine development against the columnaris through boosting up the advantageous immune responses.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India (project file no. PDF/2016/001776) and The Rajiv Gandhi National Fellowship (RGNF) Scheme of UGC, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.