192
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Experimental study and mathematical modeling for encapsulation of fentanyl citrate drug in nanostructured lipid carrier

&
Pages 1263-1271 | Received 17 Jan 2019, Accepted 20 Mar 2019, Published online: 16 Apr 2019
 

Abstract

The aim of this study is to prepare a nanostructured lipid carrier (NLC) containing Fentanyl Citrate drug. The materials were selected in a way to achieve a nanostructure with lower particle size and higher drug entrapment efficiency. For this purpose, we used two mathematical models, Van Krevelen-Hoftyze and Hoy’s methods, which are based on the calculation of solubility parameters. Various NLC formulations are prepared experimentally to validate the mathematical modeling results. Hot homogenization method was used for NLC preparation. DLS, HPLC, TEM and DSC analyses are performed to calculate the size, drug entrapment efficiency, morphology and thermal behavior of particles, respectively. Experimental results suggest that the best NLC formulation has a particle size of 90 nm with a spherical morphology and drug entrapment efficiency of about 82%. A comparison of the mathematical and experimental results exhibits that Van Krevelen-Hoftyzer method is unable to provide an accurate estimation of the decreasing trend of particle size by chaining the components of NLC. However, Hoy’s method seems to be suitable for this purpose. Moreover, both mathematical methods could successfully estimate variation trend of drug entrapment efficiency by chaining the NLC components. Results show that surfactants-lipids solubility parameter has a bearing on the nanoparticle size while drug-lipid solubility parameter affects drug entrapment efficiency.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.