419
Views
24
CrossRef citations to date
0
Altmetric
Research Articles

4-Bromo-4’-chloro pyrazoline analog of curcumin augmented anticancer activity against human cervical cancer, HeLa cells: in silico-guided analysis, synthesis, and in vitro cytotoxicity

, , , , &
Pages 1335-1353 | Received 03 Feb 2019, Accepted 29 Mar 2019, Published online: 17 Apr 2019
 

Abstract

Inspired by the synergistic effects of hetero-aromatic scaffolds on curcumin, a novel array of pyrazoline substituted curcumin analogs was designed. Multi-scale computational studies were carried out to target the proposed analogs on human kinase β (IKK-β), a potential anti-cancer target. In molecular docking analysis, all the eleven molecules were observed to bind the target site and 4-bromo-4’-chloro analog displayed three hydrogen bond interactions with a docking score of –11.534 kcal/mol higher than parent molecule, curcumin (docking score = –7.12 kcal/mol) as the propellant shaped of analogs aided in proper binding with Kinase Domain binding pocket. The molecular dynamics and simulations studies revealed that the stable complexes of lead molecule were developed as the minimal deviations per residue of protein found within the range of 0.11 to 0.92 Å. The proposed compounds were synthesized, characterized and biologically evaluated against human cervical cancer cell line, HeLa, using standard MTT cell assay. Bio-evaluation studies exhibited superior cytotoxic profile for many analogs as Chloro bromo analog with IC50 value (8.7 µg/mL) exhibited fivefolds improvement in the potency in comparison to curcumin (IC50 = 42.4 µg/mL) but was less potent than the standard drug, paclitaxel (IC50 = 0.008µg/mL). The apoptotic effect was evaluated in the terms of caspase-3 enzyme cleavage and exhibited 70.5% of apoptosis significantly (p < 0.05) higher than 19.9% induced by curcumin. In short, 4-bromo-4’-chloro analog was the potent cytotoxic agent in this structural class and must be evaluated further under a set of stringent parameters for transforming in to a clinically viable therapeutic molecule.

Communicated by Ramaswamy H. Sarma

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.