443
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization and biological evaluation of novel benzimidazole derivatives

, , , , , , , , , & show all
Pages 1670-1682 | Received 16 Dec 2018, Accepted 29 Apr 2019, Published online: 22 May 2019
 

Abstract

In search of achieving less toxic and more potent chemotherapeutics, three novel heterocyclic benzimidazole derivatives: 2-(1H-benzo[d]imidazol-2-yl)-4-chlorophenol (BM1), 4-chloro-2-(6-methyl-1H-benzo[d]imidazol-2-yl)phenol (BM2) and 4-chloro-2-(6-nitro-1H-benzo[d]imidazol-2-yl)phenol (BM3) with DNA-targeting properties, were synthesized and fully characterized by important physicochemical techniques. The DNA binding properties of the compounds were investigated by UV–Visible absorption titrations and thermal denaturation experiments. These molecules exhibited a good binding propensity to fish sperm DNA (FS-DNA), as evident from the high binding constants (Kb) values: 1.9 × 105, 1.39 × 105 and 1.8 × 104 M‒1 for BM1, BM2 and BM3, respectively. Thermal melting studies of DNA further validated the absorption titration results and best interaction was manifested by BM1 with ΔTm = 4.96 °C. The experimental DNA binding results were further validated theoretically by molecular docking study. It was confirmed that the molecules (BM1–BM3) bind to DNA via an intercalative and groove binding mode. The investigations showed a correlation between binding constants and energies obtained experimentally and through molecular docking, indicating a binding preference of benzimidazole derivatives with the minor groove of DNA. BM1 was the preferential candidate for DNA binding because of its flat structure, π–π interactions and less steric hindrance. To complement the DNA interaction, antimicrobial assays (antibacterial & antifungal) were performed. It was observed that compound BM2 showed promising activity against all bacterial strains (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes and Escherichia coli) and fungi (Aspergillus flavus, Aspergillus fumigatus and Fusarium solani), while rest of the compounds were active against selective strains. The MIC values of BM2 were found to be in the range of 12.5 ± 2.2–25 ± 1.5 µg/mL. Thus, the compound BM2 was found to be the effective DNA binding antimicrobial agent. Furthermore, the preliminary cytotoxic properties of synthesized compounds were evaluated by brine shrimps lethality assay to check their nontoxic nature towards healthy normal cells.

Communicated by Ramaswamy H. Sarma

Highlights

  • New heterocyclic benzimidazole molecules were synthesized and characterized.

  • FT–IR, 1H and 13C NMR, GC–MS, TOF–MS and single crystal X-ray diffraction and elemental analysis were used for structure elucidation.

  • DNA binding propensity was assessed by spectroscopic and computational methods.

  • Antibacterial and cytotoxic activities were also investigated.

Acknowledgements

We acknowledge the valuable input from Ms. Sadaf Ikram for the interpretation of molecular docking.

Additional information

Funding

Khalid Mahmood is highly thankful to HEC Pakistan for providing financial support under Indigenous 5000 Ph.D. Fellowship Program and for International Research Support Initiative Program (IRSIP). The funding from Quaid-i-Azam University, Islamabad, Pakistan under University Research Fund (URF) is also greatly acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.