365
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Insights into membrane-bound presenilin 2 from all-atom molecular dynamics simulations

, &
Pages 3196-3210 | Received 03 Jun 2019, Accepted 03 Aug 2019, Published online: 09 Sep 2019
 

Abstract

Presenilins 1 and 2 (PS1 or PS2) are main genetic risk factors of familial Alzheimer’s disease (AD) that produce the β-amyloid (Aβ) peptides and also have important stand-alone functions related to, e.g. calcium signaling. Most work so far has focused on PS1, but humans carry both PS1 and PS2, and mutations in both cause AD. Here, we develop a computational model of PS2 in the membrane to address the question how pathogenic PS2 mutations affect the membrane-embedded protein. The models are based on cryo-electron microscopy structures of PS1 translated to PS2, augmented with missing residues and a complete all-atom membrane–water system, and equilibrated using three independent 500-ns simulations of molecular dynamics with a structure-balanced force field. We show that the nine-transmembrane channel structure is substantially controlled by major dynamics in the hydrophilic loop bridging TM6 and TM7, which functions as a ‘plug’ in the PS2 membrane channel. TM2, TM6, TM7 and TM9 flexibility controls the size of this channel. We find that most pathogenic PS2 mutations significantly reduce stability relative to random mutations, using a statistical ANOVA test with all possible mutations in the affected sites as a control. The associated loss of compactness may also impair calcium affinity. Remarkably, similar properties of the open state are known to impair the binding of substrates to γ-secretase, and we thus argue that the two mechanisms could be functionally related.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that no competing financial interest exists in relation to this work.

Additional information

Funding

The authors acknowledge the financial support received from the Novo Nordisk Foundation, grant NNF17OC0028860, and the Danish Council for Independent Research | Natural Sciences (DFF), grant 7016-00079B for this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.