218
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Precise design of highly isoform-selective p21-activated kinase 4 inhibitors: computational insights into the selectivity mechanism through molecular dynamics simulation and binding free energy calculation

, , , , &
Pages 3825-3837 | Received 17 Jun 2019, Accepted 31 Aug 2019, Published online: 15 Sep 2019
 

Abstract

Understanding the selectivity mechanisms of inhibitors towards highly similar protein kinases is the first step in discovering new selective candidate for satisfactory safety profile. P21-activated kinases (PAKs) are pertain to a family of serine/threonine (Ser/Thr) protein kinases, which are the first Rho family GTPase-regulated kinases identified and served as important downstream mediators of Ras-Rac and Cdc42 function. Among PAKs, PAK4 is emerging as a promising target for cancer treatment. Since the PAK2 inhibition correlates with increased acute cardiovascular toxicity, which may be enhanced by PAK1 inhibitor, selective inhibition of PAK4 over PAK1 is crucial in discovering safe anticancer candidates with optimal therapeutic efficacy. While the conserved ATP-binding pockets of both PAK1/4 make it challenging to discriminating selective inhibitors between PAK1 and PAK4, thus the selectivity mechanism of PAK1/4 inhibitors will be explored in this present study through, computational strategies which combine molecular docking, structural comparison, molecular dynamics simulation and molecular mechanics/generalized Born surface area calculation. The research would provide valuable insight into the selectivity mechanism of PAK4 inhibitors over PAK1 and thus be helpful for designing selective PAK4 inhibitors.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was financially supported by the National Natural Science Foundation of Liaoning province (grant no. 20170540854).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.