178
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular insight into adsorption affinities of Carmustine drug on boron and nitrogen doped functionalized single-walled carbon nanotubes using density functional theory including dispersion correction calculations and molecular dynamics simulation

&
Pages 4817-4826 | Received 15 Jul 2019, Accepted 02 Nov 2019, Published online: 20 Nov 2019
 

Abstract

We report a quantum mechanics calculation and molecular dynamics simulation study of Carmustine drug (BNU) adsorption on the surface of nitrogen (N) and boron (B) doped-functionalized single-walled carbon nanotubes. The stability of the optimized complexes is determined on the basis of relative adsorption energy (ΔEads). The ΔEads results claim that drug molecule tends to adsorb on the nitrogen and boron doped functionalized tubes with the energy values in the range of −61.177 to −95.806 kJ/mol. Based on the obtained results, it is observed that N-doping compared with B-doping has improved more effectively drug absorption on the surface of functionalized nanotube. The results of Atoms in Molecule calculations indicate that drug adsorbs molecularly via hydrogen bonds interactions on the surface doped-functionalized carbon nanotubes. Moreover, molecular dynamics simulation is performed to investigate the dynamics behavior of the drug molecules on the nitrogen-doped functionalized carbon nanotube (f-NNT) and functionalized carbon nanotube (f-CNT). The higher average calculated electrostatic and van der Waals energies as well as higher number of intermolecular hydrogen bonds in BNU-f-NNT in comparison with BNU-f-CNT model suggest the more effectual interaction between drug molecules and nitrogen-doped functionalized carbon nanotube.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.