376
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In-silico profiling and structural insights into the impact of nSNPs in the P. falciparum acetyl-CoA transporter gene to understand the mechanism of drug resistance in malaria

, , , , &
Pages 558-569 | Received 26 Oct 2019, Accepted 30 Dec 2019, Published online: 21 Jan 2020
 

Abstract

The continuous emergence of resistance to the available drugs poses major constraints in the development of effective therapeutics against malaria. Malaria drug resistance has been attributed to be the manifestation of numerous factors. For example, mutations in the parasite transporter protein acetyl-CoA transporter (Pfact) can remarkably affect its uptake affinity for a drug molecule against malaria, and hence enhance its susceptibility to resistance. To identify major contributors to its loss of functionality, we have thoroughly scrutinized eight such recently reported resistant mutants, via in-silico tools in terms of alterations in different properties. We performed molecular dynamics simulations of the selected Pfact mutants to gain deeper insights into the structural perturbation and dynamicity. Comparison of residue interaction network map of mutants with that of Wild type (WT) protein suggests structural changes as a result of the mutation(s) that translate into the weakening of intra-protein interactions, especially around the drug binding pocket. This, in turn, diminishes the affinity of drug molecules towards the binding site, which was validated by docking analysis. Finally, collating all the observations, we have delineated R108K mutant to deviate the most from WT protein, which, intriguingly suggests that replacing an amino acid with another of similar nature can even translate into greater functional effects as those with dissimilar substitutions.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the Department of Biotechnology (DBT), Government of India, grants BT/PR6963/BID/7/427/2012 and BT/BI/25/066/2012, awarded to D.G. Senior Research Fellowship from ICMR is acknowledged by R.S.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.