372
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of new potential CDK2/VEGFR2 type II inhibitors by fragmentation and virtual screening of natural products

, , &
Pages 3285-3299 | Received 16 Aug 2019, Accepted 24 Apr 2020, Published online: 13 May 2020
 

Abstract

Cyclin-Dependent Kinase 2 (CDK2) and Vascular Endothelial Growth Factor Receptor (VEGFR2) have largely been considered as attractive targets for developing anticancer agents. However, there is no dual inhibitor commercially available in the market that interacts simultaneously with the allosteric back pocket of these enzymes. We applied a combined computational strategy that started with the generation of two overlapping pharmacophore models of both kinases at ‘inactive’ conformation. Next, several virtual libraries of natural products, including the databases TCM (Traditional Chinese Medicine), UEFS (Universidade Estadual de Feira de Santana), NuBBE (Nuclei of Bioassays, Biosynthesis, and Ecophysiology of Natural Products) and AfroDb (African Medicinal Plants Database) were deconstructed using a non-extensive version of the approach RECAP (retrosynthetic combinatorial analysis procedure). These natural-product-derived fragments (NPDFs) were screened and merged into drug-sized compounds, which were filtered by Lipinski’s Rule-of-five (Ro5) and docking. As a result, two pharmacophore models, namely Hypo1 and Hypo2, were developed with an accuracy of 0.94 and 0.84, respectively. Deconstruction of natural products produced a set of 16655 unique non-extensive NPDFs that were screened against both pharmacophore models. Finally, after merging, Ro5-filtering and docking, we obtained a set of 20 hit compounds predicted to be diverse, developable, synthesizable and potent. The computational strategy proved successful to find virtual candidates of kinase inhibitors and therefore contributes to the identification of innovative multi-target compounds with potential anticancer activity.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Administrative Colombian Department of Science, Technology, and Innovation -Colciencias- under Grant No. 727, and the Foundation for the Promotion of Research and Technology (FPIT by its acronym in Spanish) of the Central Bank of Colombia under Inter-institutional Agreement No. 201832.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.