7,813
Views
63
CrossRef citations to date
0
Altmetric
Express Communication

Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 3793-3801 | Received 09 May 2020, Accepted 11 May 2020, Published online: 01 Jun 2020
 

Abstract

The best therapeutic strategy to find an effective vaccine against SARS-CoV-2 is to explore the target structural protein. In the present study, a novel multi-epitope vaccine is designed using in silico tools that potentially trigger both CD4 and CD8 T-cell immune responses against the novel Coronavirus. The vaccine candidate was designed using B and T-cell epitopes that can act as an immunogen and elicits immune response in the host system. NCBI was used for the retrieval of surface spike glycoprotein, of novel corona virus (SARS-CoV-2) strains. VaxiJen server screens the most important immunogen of all the proteins and IEDB server gives the prediction and analysis of B and T cell epitopes. Final vaccine construct was designed in silico composed of 425 amino acids including the 50S ribosomal protein adjuvant and the construct was computationally validated in terms of antigenicity, allergenicity and stability on considering all critical parameters into consideration. The results subjected to the modeling and docking studies of vaccine were validated. Molecular docking study revealed the protein-protein binding interactions between the vaccine construct and TLR-3 immune receptor. The MD simulations confirmed stability of the binding pose. The immune simulation results showed significant response for immune cells. The findings of the study confirmed that the final vaccine construct of chimeric peptide could able to enhance the immune response against nCoV-19.

Acknowledgements

The authors acknowledge to VFSTR (Deemed to be university) and DST-FIST (LSI- 576/2013) networking facility to carry out this work.

Disclosure statement

No potential conflict of interest is reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.