366
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Exploration and evaluation of bioactive phytocompounds against BRCA proteins by in silico approach

, , , & ORCID Icon
Pages 5471-5485 | Received 23 May 2020, Accepted 25 Jun 2020, Published online: 08 Jul 2020
 

Abstract

The proteins encoded by the two major breast cancer genes (BRCA1 and BRCA2), ensure the stability of DNA and prevent uncontrolled cell growth; mutation of these genes is linked to the development of hereditary breast cancers. Exploration of human breast cancer inhibitors plays a vital role in the drug discovery process. In the current work, in silico studies were performed which involves a computational approach for the identification of active phytocompounds from the diverse set of medicinal plant products against the BRCA receptor. The in silico study through pharmacokinetics and pharmacodynamics properties shown promising outcomes for these phytocompounds data set as breast cancer inhibitors. It was observed that the compounds conformed to the Lipinski’s rule of five and had good bioavailability. The drug-likeness model score and ADMET profile of the designed ligands also established their potential as a drug candidate. The docking study provided useful insights on potential target-lead interactions and indicated that the newly designed leads had a good binding affinity for BRCA targets. A pharmacophore model was built to explore the scaffolds for BRCA inhibitory activity. An effort is made to screen an inhibitor against BRCA targets by combining the use of ADMET, docking score, and pharmacophore model.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Inputs from Dr. Suresh Kumar R, Senior Research Scientist at Syngene International Limited in preparing this manuscript and corrections is highly acknowledged.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.