344
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prospecting for new catechol-O-methyltransferase (COMT) inhibitors as a potential treatment for Parkinson’s disease: a study by molecular dynamics and structure-based virtual screening

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5872-5891 | Received 06 Mar 2020, Accepted 06 Jul 2020, Published online: 21 Jul 2020
 

Abstract

Parkinson’s disease (PD) is a neurodegenerative, chronic, and progressive disease, common in the elderly. The catechol-O-methyltransferase (COMT) is a monomeric enzyme involved in dopamine (DA) degradation, the neurotransmitter in deficit in patients with PD. The reference treatment of PD consists of levodopa (L-dopa) administration, which is the precursor of DA. The inhibition of COMT is an adjuvant treatment in PD since it keeps DA levels constant. The goal of this study was to identify drug candidates capable of inhibiting COMT for the treatment of PD and identify important fragments of these molecules. Initially, we analyzed the flexibility of COMT and defined its main conformations in solution regarding the absence (system I) and presence of the S-adenosyl-L-methionine (SAM) cofactor (system II) through molecular dynamics (MD) simulations. Two regions in these structures were selected for molecular docking, firstly the entire cavity where the cofactor and substrates are bound and secondly the specific biding region of the enzyme substrates. Based on the conformations of the MD, the virtual screening (VS) was performed against FDA Approved and Zinc Natural Products databases aiming at the selection of the best compounds. Subsequently, the absorption, distribution, metabolization, excretion, and toxicity (ADMET) properties, as well as drug-score and drug-likeness indexes of the most promising compounds were analyzed. After a detailed analysis of the compounds selected by structure-based VS, it was possible to highlight the fragments most frequently involved in their stability: 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 9H-Benz(c)indole(3,2,1-ij)(1,5)naphthyridin-9-one and (10R,13S)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17dodecahydrocyclopenta[a]phenanthren-3-one. The identification of these potential fragments is essential for the prospection of more specific inhibitors against COMT using the technique of Fragment-based lead discovery (FBLD). Besides, this study allowed us to identify the potential COMT inhibitors through a complete understanding of molecular-level interactions based on the flexibility of this protein.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The author(s) declare no competing interests.

Additional information

Funding

This work, performed at Universidade Federal de Goiás (UFG), was supported by the Ministério da Ciência e Tecnologia/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTI/CNPq), Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001), Financiadora de Estudos e Projetos (FINEP), Programa de Apoio a Núcleos de Excelência (PRONEX) and Instituto Nacional de Ciência e Tecnologia para Inovação Farmacêutica (INCT-IF). Additionally, I.R.S was supported by fellowships from CAPES.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.