362
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Understanding dual delivery of doxorubicin and paclitaxel with boron nitride and phosphorene nanosheets as highly efficient drug delivery systems

ORCID Icon &
Pages 5613-5618 | Received 10 Feb 2020, Accepted 01 Jul 2020, Published online: 16 Jul 2020
 

Abstract

Dual delivery of Doxorubicin (DOX) and Paclitaxel (PTX) anticancer drug molecules with boron nitride (BN) and phosphorene (PH) nanosheets are investigated using molecular dynamics (MD) simulation. Several quantities are employed to examine the adsorption mechanism of DOX and PTX on the carriers. The obtained results indicate that the drug molecules spontaneously move toward the carriers and form stable complexes. In the interaction of the drugs and BN, the contribution of van der Walls (vdW) is higher than electrostatic energy which can be related to the formation of strong π–π interactions between the drugs and the carrier. Moreover, in the same manner, in the adsorption of drugs on the PH surface, the role of vdW interaction is more than electrostatic energy. Moreover, the oxidative properties of BN and PH nanosheets are examined. The obtained results indicated that the diffusion coefficient values of PTX and DOX molecules in the presence of hydroxyl groups are increased, which can attribute to the blocking effect of functional groups.

Communicated by Ramaswamy H. Sarma

Disclosure statement

There are no conflicts to declare.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.