2,166
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Tackling COVID-19: identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and MM-PBSA calculations

Pages 6689-6704 | Received 05 Jun 2020, Accepted 17 Jul 2020, Published online: 31 Jul 2020
 

Abstract

The widespread of the COVID-19 disease, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), had severely affected the entire world. Unfortunately, no successful vaccines or antiviral drugs are currently available which leaves the scientific community under huge pressure to tackle this pandemic. Among the identified promising druggable targets, specific to this virus, is the main protease (Mpro) enzyme, which is vital for viral replication, transcription and packaging within the host cells. In this study, selective inhibition of the Mpro was sought via thorough analysis of its available structural data in the Protein Data Bank. To this end, COVID-19 Mpro crystal complexes were explored and the key interacting residues (KIRs) within its active site, that are expected to be vital for effective ligand binding, were identified. Based on these KIRs, 3D pharmacophore models were generated and used in virtual screening of different databases. Retrieved hits were docked into the active site of the enzyme and their MM-PBSA based free binding energies were calculated. Finally, ADMET descriptors were calculated to aid the selection of top scoring hits with best ADMET properties. Nine compounds with different chemotypes were identified as potential Mpro inhibitors. Further, MD simulations of a virtual complex of Mpro with one of the promising hits revealed stable binding which is indicative of good inhibitory potential. The identified compounds in this study are expected to support the global drug discovery efforts in fighting against this highly contagious virus by narrowing the searchable chemical space for potential effective therapeutics.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The author would like to thank the Deanship of Scientific Research and the Faculty of Pharmacy at Jordan University of Science and Technology for providing infrastructure.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.