203
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Density functional theory, molecular docking and in vivo muscle relaxant, sedative, and analgesic studies of indanone derivatives isolated from Heterophragma adenophyllum

, , , , , ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 6488-6499 | Received 16 Jun 2020, Accepted 20 Jul 2020, Published online: 05 Aug 2020
 

Abstract

Heterophragma adenophyllum (HA) is an important medicinal plant which is used in traditional medicine for the treatment of muscular tension and pain. Herein, we report the isolation of methyl,1,2-dihydroxy-2-(3-methylbut-2-en-1-yl)-3-oxo-2,3-dihydro-1H-indene-1-carboxylate (1), from the roots of H. adenophyllum. The isolated compound 1 was evaluated for in vivo muscle relaxant, sedative, and analgesic potential in Swiss albino mice. Results revealed that the isolated compound 1 exhibited a dose- and time-dependent muscle coordination (51%) and a significant (p < 01) sedative effect. It also showed a considerable (p < 0.5) analgesia after 30 min of post treatment and was maintained for up-to 120 min of experimental duration. In acute toxicity studies, no mortality was observed which indicates a preliminary safety of compound 1. Furthermore, the experimental results were compared with the theoretical studies by using density functional theory (DFT). The stability of the compound as well as the flow of electrons was determined by the calculated Frontier orbital analysis. The calculated stretching frequencies, 1H-NMR/13C-NMR chemical shift values and UV-visible spectra were found to be in agreement with experimental values. The results obtained from molecular docking studies were used to explore the mechanism of analgesic and muscle relaxant activity.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project. We also thank Godswill Ntsomboh Ntsefong for English language proofreading of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.