351
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive in silico exploration of pharmacological properties, bioactivities and COX-2 inhibitory potential of eleutheroside B from Eleutherococcus senticosus (Rupr. & Maxim.) Maxim.

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 6553-6566 | Received 15 Apr 2020, Accepted 22 Jul 2020, Published online: 06 Aug 2020
 

Abstract

Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., popularly known as ‘Siberian ginseng’, is an important medicinal plant. Pharmacologically active compounds of this plant are called eleutherosides and among them, eleutheroside B is the most prevalent. The E. senticosus has been reported to have many medicinal properties however; very few studies are reported to understand the medicinal properties of eleutheroside B. Consequently, in the present study various computational tools have been used to predict the drug-likeness, bioactivities, and pharmacokinetic properties of eleutheroside B. Besides, the inhibitory potential of eleutheroside B has been investigated against cyclooxygenase 2 (COX-2) enzyme. This study suggests that eleutheroside B is a drug-like compound with bioactivity score (-0.08 to 0.38), having satisfactory pharmacokinetic values. Metabolism and toxicities were further studied using FAME3, GLORY, pred-hERG and Endocrine Disruptome tools. No severe toxicities (Ames, hepatotoxicity, cardiotoxicity, skin sensitization) were predicted. Rat acute toxicity, ecotoxicity and cell line cytotoxicity were evaluated based on GUSAR and CLC-pred. The compound has been predicted as non-toxic (class 5), non-hERG inhibitor and less likely to cause adverse drug interactions. Molecular docking against COX-2 enzyme revealed strong hydrogen bonds (SER530, TYR355, LEU352, SER353, VAL349, TYR385, MET522) and hydrophobic interaction (LEU352) with eleutheroside B. The docking score (-6.97 kcal/mol) suggested that this molecule can be utilized as an anti-inflammatory agent as well as a potential anticancer drug in the future. Hence, this is a comprehensive integrated in silico approach to establish the anti-inflammatory mechanism of eleutheroside B in the background of its potential in future drug development.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that they have no competing interests.

Additional information

Funding

This research was partially supported by the research grant provided by GARE (Grant for Advance Research in Education LS2016165 No. 37.20.0000.004.033.020.2016.7725) funded by the Ministry of Education, Bangladesh and Special Allocation in Science and Technology of Ministry of Science and Technology (No. 39.00.0000.09.06.79.2017/ES-99), Bangladesh.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.