194
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

In silico exploration of the fingerprints triggering modulation of glutaminyl cyclase inhibition for the treatment of Alzheimer’s disease using SMILES based attributes in Monte Carlo optimization

, , & ORCID Icon
Pages 7181-7193 | Received 30 Jun 2020, Accepted 01 Aug 2020, Published online: 14 Aug 2020
 

Abstract

Alzheimer’s disease is the most common neurodegenerative disorder and being a social burden Alzheimer’s has become an economic liability on developing countries. With limited understanding regarding the cause of disease, it is commonly identified by extracellular deposit of amyloid β (Aβ) peptides as senile plaques. Pyroglutamated Aβ is identified from the brain of AD patients and constituted the majority of total Aβ present. The formation of Pyroglutamated Aβ could be hindered by the use of Glutaminyl cyclase inhibitors and could efficiently improve the symptoms of Alzheimer’s. The literature revealed the competence of quantitative structure activity/property relationship studies in drug discovery. The present work explores the efficiency of Monte Carlo based QSAR modelling studies on a dataset of 125 Glutaminyl cyclase inhibitors with pKi taken as the endpoint for QSAR analysis. The dataset is divided into training, subtraining, calibration and validation sets resulting in the generation of five random splits. The validation is performed in accordance with the Organization of Economic Corporation and Development principles. The values of R2, Q2, index of ideality of correlation, concordance correlation coefficient, av. rm2 and delta rm2 of calibration set of the best split are found to be 0.9012, 0.8775, 0.9479, 0.9435, 0.8347 and 0.0847, respectively. The structural features responsible for increasing the inhibitory activity are identified. These structural features are added to a base compound from the dataset to design six novel molecules. These new molecules possess improved inhibitory activity as compare to the base compound. The results are further supported by docking studies.

Communicated by Vsevolod Makeev

Acknowledgements

The authors are grateful to Dr Andrey A. Toropov and Dr Alla P. Toropov for providing CORAL software. The authors are also thankful to the respective universities for providing necessary facilities.

Disclosure statement

There is no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.