2,933
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

In silico molecular investigations of pyridine N-Oxide compounds as potential inhibitors of SARS-CoV-2: 3D QSAR, molecular docking modeling, and ADMET screening

, , , , &
Pages 143-153 | Received 29 Apr 2020, Accepted 06 Aug 2020, Published online: 17 Aug 2020
 

Abstract

The new coronavirus SARS-CoV-2 virus is causing a severe pneumonia in human, provoking the serious outbreak epidemic CoV-2. Since its appearance in Wuhan, China on December 2019, CoV-2 becomes the biggest challenge the world is facing today, including the discovery of antiviral drug for SARS-CoV-2. In this study, the potential inhibitory of a class of human SARS inhibitors, namely pyridine N-oxide derivatives, against CoV-2 was addressed by quantitative structure-activity relationship 3 D-QSAR. The reliable CoMSIA developed model of 110 pyridine N-oxide based-antiviral compounds, showed Q2= 0.54 and rext2=0.71. The molecular surflex-docking was applied to identify the crystal structure of CoV-2 main protease 3CLpro (PDB: 6LU7) and two potentially and largely used antiviral molecules, namely chloroquine, hydroxychloroquine. The obtained free energy affinity and ADMET properties indicate that among the series of model antiviral compounds examined, the new antiviral compound A5 could be an excellent antiviral drug inhibitor against COVID-19. The inhibition activity of pyridine N-oxyde compounds against CoV-2 was compared with the activity of two common antiviral drug, namely chloroquine (CQ) and hydroxychloroquine (HCQ). DFT method was also used to define the sites of reactivity of pyridine N-oxyde derivatives as well as CQ and HCQ.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.