103
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study on the interaction of polyamine transport (PAT) and 4-Chloro-naphthalimide-homospermidine conjugate (4-ClNAHSPD) by molecular docking and dynamics

, , , , , , & show all
Pages 290-296 | Received 12 Mar 2020, Accepted 13 Aug 2020, Published online: 28 Aug 2020
 

Abstract

Polyamine transporter (PAT) is a protein that can deliver "drug-polyamine" conjugates to tumor cells. 4-Chloro-naphthalimide- homospermidine (4-ClNAHSPD) displayed good antitumor activity and excellent cell selectivity via PAT pathway. In this paper, 4-ClNAHSPD and spermidine (SPD) were docked against PAT. The results showed that 4-ClNAHSPD could bind to PAT through hydrogen bond, Van der Waals, salt bridge or attractive charge and hydrophobic interaction. The interaction of SPD and PAT, however, was hydrogen bond and Van der Waals interaction. Moreover, their binding sites were also different. The primary binding sites of 4-ClNAHSPD with PAT are the residues of VAL59, HIS222, ASP61, ASP179 and GLU64, while SPD interacts with PAT in the sites of ASP37, ASP244, APS275 and SER36. The docked ligand-protein complexes were simulated for 5000ps. In simulations, various binding sites further resulted in the diverse root-mean-square deviation (RMSD) and root-mean-square deviation fluctuation (RMSF) values. The RMSD and RMSF values of 4-ClNAHSPD-PAT indicated that 4-ClNAHSPD caused a weak conformational change of PAT in a different style from SPD. More importantly, the interaction force numbers of 4-ClNAHSPD-PAT were also changed after the simulation. These results supported that 4-ClNAHSPD harnesses PAT pathway for cellular entrance.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Henan Programs for Science and Technology Development (No. 182102310119) and the Natural Science Foundation of Education (No 18A350001). We wish to thank the Super Computer Center of Henan for providing us the Discovery Studio 2017R2 software for the virtual docking and simulation work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.