332
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Screening natural inhibitors against upregulated G-protein coupled receptors as potential therapeutics of Alzheimer’s disease

, , &
Pages 673-684 | Received 17 Jan 2020, Accepted 27 Aug 2020, Published online: 09 Sep 2020
 

Abstract

Computational approaches have been helpful in high throughput screening of drug libraries and designing ligands against receptors. Alzheimer's disease is a complex neurological disorder, which causes dementia. In this disease neurons are damaged due to formation of Amyloid-beta plaques and neurofibrillary tangles, which along with some other factors contributes to disease development and progression. The objective of this study was to predict tertiary structures of five G-protein coulped neurotransmitter receptors; CHRM5, CYSLTR2, DRD5, GALR1 and HTR2C, that are upregulated in Alzheimer’s disease, and to screen potential inhibitors for against these receptors. In this study, Comparative modelling, molecular docking, MMGBSA analysis, ADMET screening and molecular dynamics simulation were performed. Tertiary structures of the five GPCRs were predicted and further subjected to molecular docking against natural compounds. Pharmacokinetic studies of natural compounds were also conducted for assessing drug-likeness properties. Molecular dynamics simulations were performed to investigate the structural stability and binding affinities of each complex. Finally, the results suggested that ZINC04098704, ZINC31170017, ZINC05998597, ZINC67911229, and ZINC67910690 had better binding affinity with CHRM5, CYSLTR2, DRD5, GALR1, and HTR2C (5-HT2C) proteins, respectively.

Communicated by Ramaswamy H. Sarma

Acknowledgements

AC is highly thankful to the Department of Biotechnology, MNNIT-Allahabad, for providing essential facilities. Computing facility availed at IIIT Allahabad is highly acknowledged. AM is highly thankful to SERB New Delhi for a research grant.

Disclosure statement

The authors declare no competing interests.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.