342
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

In silico improvement of the cyanobacterial lectin microvirin and mannose interaction

, , , , ORCID Icon, , , , & show all
Pages 1064-1073 | Received 26 Apr 2020, Accepted 06 Sep 2020, Published online: 29 Sep 2020
 

Abstract

Lectins that bind to HIV envelope glycoprotein can inhibit virus-cell fusion and be used for rational drug design. This paper presents the results of an in silico approach to improve affinity interaction between the cyanobacterial lectin microvirin and its ligand Manα(1-2)Man. Comparative modeling and molecular dynamics tools were used. Additionally, the alanine scanning webserver was used to study the importance of protein residues in the binding site and to guide mutant production. The model obtained presented two homologous domains designated as domains A and B, each consisting of a single strand with triple and antiparallel β-sheets of (β1-β3 and β6-β8). Disulfide bonds between the cysteines (Cys60-Cys80, Cys63-Cys78 and Cys8-Cys24) were also found. The highly conserved binding site, including residues Asn44, Ile45, Asp46, Gln54, Asn55, Glu58, Thr59, Gln81, Thr82 and Met83. The RMSD values of the di-mannose and the interaction site were very stable during the molecular dynamics. Calculations of the occupation time of the hydrogen bonds were made for the residues that showed interaction in the complex lectin and ligand. The residue that contributed most to the interaction with Manα(1-2)Man was Asn55. After validation, the model generated remained stable during the entire simulation. Despite its structural similarity with the template we used, our mutant (Thr82Arg) showed a higher affinity interaction with Manα(1-2)Man.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Fundação Amazônia de Amparo a Estudos e Pesquisas do Pará (FAPESPA) for financial support (ICAAF 099/2014). Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) also supported an individual author (ECG) through grant 311686/2015-0.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.