218
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulation and free energy calculation studies of Coagulin L as dipeptidyl peptidase-4 inhibitor

&
Pages 1128-1138 | Received 04 Jun 2020, Accepted 08 Sep 2020, Published online: 20 Oct 2020
 

Abstract

Plant derived product can be used as other alternatives to currently used drugs for controlling chronic diseases like Diabetes mellitus. The potential of Coagulin L (a constituent of Withania coagulans) as dipeptidyl peptidase-4 (DPP-4) inhibitor was evaluated by molecular modelling study. It was observed that amino acid residues such as Glu205, Glu206, Tyr 547, His 740, and Try662 interacts with Coagulin L and Saxagliptin (a known DPP-4 inhibitor). Other nonbonded interactions of Coagulin L and Saxagliptin with DPP-4 binding residues were also found similar. The docking energy of Coagulin L was found to be −7.69 Kcal/mol whereas −8.44 kcal/mol was recorded for Saxagliptin. MD simulation study revealed stable binding throughout 100 ns simulation. RMSD plot of the complex was stabilized in 43 ns and remained stable during entire simulation(100 ns). RMSF plot of DPP-4 Coagulin L interaction showed major fluctuations at residue 246 and 766, however, Arg 125, Glu 205, Ser 209 and His 740 showed no major perturbations. Principal Component Analysis showed that important dynamics of the protein remain unchanged during entire simulation since the non-polar, van der waals, ionic interaction and solvation energy, altogether play important role in the complex stability. The molecular modelling study of DPP-4 with Coagulin L was an effort to establish correlation with traditional practices of Withania coagulans as antidiabetic agent in Indian subcontinent.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.