180
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Unassisted N-acetyl-phenylalanine-amide transport across membrane with varying lipid size and composition: kinetic measurements and atomistic molecular dynamics simulation

, , , & ORCID Icon
Pages 1445-1460 | Received 24 Jul 2020, Accepted 17 Sep 2020, Published online: 09 Oct 2020
 

Abstract

Biological membranes are essential to preserve structural integrity and regulate functional properties through the permeability of nutrients, pharmaceutical drugs, and neurotransmitters of a living cell. The movement of acetylated and amidated phenylalanine (NAFA) across 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane bilayers is investigated to probe physical transport. The rate of transport is measured experimentally applying parallel artificial membrane permeation assay (PAMPA). At the physiological temperature, 310 K, the measured time constants in the neutral pH were ∼6 h in DOPC and ∼3 h in POPC, while in a more acidic condition, at a pH 4.8, the time constants were ∼8 h in both lipids. Computationally, we have expanded our transport study of three aromatic dipeptides across a bilayer composed of DOPC18. In this study, we have examined the effects of lipid composition and bilayer size on the passive transport of NAFA by simulating the dipeptide in three different bilayers, with 50 DOPC lipids, 50 POPC lipids, and 40 POPC molecules. Specifically, atomistic molecular dynamics simulations with umbrella sampling were used to calculate the potential of mean force for the passive permeation of NAFA across the bilayers. Diffusion constants were then calculated by numerically solving the Smoluchowski equation. Permeability coefficients and mean first passage times were then calculated. Structural properties – Ramachandran plots, sidechain torsions, peptide insertion angles, radial distribution functions, and proximal peptide water molecules – were also examined to determine the effect of system size and lipid type. In terms of systems size, we observed a small decrease in the highest barrier of the potential of mean force and fewer sampled sidechain dihedral angle conformations with 40 versus 50 POPC lipids due to weaker membrane deformations within a smaller lipid bilayer. In terms of lipid type, DOPC contains two monounsaturated acyl chains compared to only one such acyl chain in POPC; therefore, DOPC bilayers are less ordered and more easily deformed, as seen by a much broader potential of mean force profile. The NAFA in DOPC lipid also transitioned to an internally hydrogen-bonded backbone conformation at lower membrane depths than in POPC. Similarly, as for other aromatic dipeptides, NAFA tends to insert into the membrane sidechain-first, remains mostly desolvated in the membrane center, and exhibits slow reorientations within the bilayer in both DOPC and POPC. With a joint experimental and computational study we have gained a new insight into the rate of transport and the underlying microscopic mechanism in different lipid bilayer conditions of the simplest hydrophobic aromatic dipeptide.

Communicated by Ramaswamy H. Sarma

Acknowledgements

GSJ would like to thank Dr. Richard A. Rivers for inspirational comments. GSJ would also like to acknowledge Dr. Eric M. González Morales of UCC for helpful suggestions. We would like acknowledge Center for Ressearch Computing resources at the University of Kansas.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

We would like to acknowledge the Center for Research Computing at the University of Kansas and on computer workstations supported by the General Research Fund at the University of Kansas. This project was supported in part by an NSF grant CHE1807852.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.