565
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Ligand-based pharmacophore modeling of TNF-α to design novel inhibitors using virtual screening and molecular dynamics

, , &
Pages 1702-1718 | Received 17 Aug 2020, Accepted 29 Sep 2020, Published online: 09 Oct 2020
 

Abstract

Tumor necrosis factor-α (TNF-α) is one of the promising targets for treating inflammatory (Crohn disease, psoriasis, psoriatic arthritis, rheumatoid arthritis) and various other diseases. Commercially available TNF-α inhibitors are associated with several risks and limitations. In the present study, we have identified small TNF-α inhibitors using in silico approaches, namely pharmacophore modeling, virtual screening, molecular docking, molecular dynamics simulation and free binding energy calculations. The study yielded better and potent hits that bind to TNF-α with significant affinity. The best pharmacophore model generated using LigandScout has an efficient hit rate and Area Under the operating Curve. High throughput virtual screening of SPECS database molecules against crystal structure of TNF-α protein, coupled with physicochemical filtration, PAINS test. Virtual hit compounds used for molecular docking enabled the identification of 20 compounds with better binding energies when compared with previously known TNF-α inhibitors. MD simulation analysis on 20 virtual identified hits showed that ligand binding with TNF-α protein is stable and protein-ligand conformation remains unchanged. Further, 16 compounds passed ADMET analysis suggesting these identified hit compounds are suitable for designing a future class of potent TNF-α inhibitors.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the Department of Biotechnology (DBT), Government of India, grants BT/BI/04/001/2018 and BT/BI/25/066/2012. RP was supported by University Grant Commission (UGC) SRF fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.