3,048
Views
51
CrossRef citations to date
0
Altmetric
Research Articles

Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in silico approach to combat COVID-19

ORCID Icon, ORCID Icon &
Pages 2067-2081 | Received 28 Aug 2020, Accepted 05 Oct 2020, Published online: 22 Oct 2020
 

Abstract

COVID-19 and its causative organism SARS-CoV2 that emerged from Wuhan city, China have paralyzed the world. With no clinically approved drugs, the global health system is struggling to find an effective treatment measure. At this crucial juncture, screening of plant-derived compounds may be an effective strategy to combat COVID-19. The present study investigated the binding affinity of phytocompounds with 3-Chymotrypsin-like (3CLpro) and Papain-like proteases (PLpro) of SARS-CoV2 using in-silico techniques. A total of 32 anti-protease phytocompounds were investigated for the binding affinity to the proteins. Docking was performed in Autodock Vina. Pharmacophore descriptors of best ligands were studied using LigandScout. Molecular dynamics (MD) simulation of apo-protein and ligand-bound complexes was carried out in YASARA software. The druglikeness properties of phytocompounds were studied using ADMETlab. Out of 32 phytochemicals, amentoflavone and gallocatechin gallate showed the best binding affinity to 3CLpro (–9.4 kcal/mol) and PLpro (–8.8 kcal/mol). Phytochemicals such as savinin, theaflavin-3,3-digallate, and kazinol-A also showed strong affinity. MD simulation revealed ligand-induced conformational changes in the protein with decreased surface area and higher stability. The RMSD/F of proteins and ligands showed stability of the protein suggesting the effective binding of the ligand in both the proteins. Both amentoflavone and gallocatechin gallate possess promising druglikeness property. The present study thus suggests that Amentoflavone and Gallocatechin gallate may be potential inhibitors of 3CLpro and PLpro proteins and effective drug candidates for SARS-CoV2. However, the findings of in silico study need to be supported by in vivo studies to establish the exact mode of action.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors thank Head, Department of Zoology, Bodoland University, India for providing necessary facility for carrying out this work. Authors also acknowledge the Head, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh, for providing necessary facilities.

Disclosure statement

Authors declare no conflict of interest.

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.