3,198
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: in-silico study

ORCID Icon, , , &
Pages 2417-2429 | Received 19 May 2020, Accepted 15 Oct 2020, Published online: 28 Oct 2020
 

Abstract

COVID-19, emerged at the end of 2019 have dramatically threatened the health, economy, and social mobility of people around the world and till date no medication is available for its treatment. An amazing herb, Nigella sativa, having antiviral, antihypertensive, anti- diarrhoeal, analgesics, and anti-bacterial properties, needs to be explored for its efficacy against SARS-CoV-2, the causative agent of COVID-19. In-silico studies were carried out to understand the role of its bioactive constituents in COVID-19 treatment and prevention. Firstly, the disease network was prepared by using ACE2 (Angiotensin-II receptor), as it is the entry site for virus. It was used to decipher the mechanism of SARS-COV-2 infection in humans. Second, the target receptors for N. sativa were predicted and protein interaction studies were conducted. Further, docking studies were also performed to analyse it for treatment purpose as well. This study concludes that pathways undertaken by N. sativa bioactive constituents were similar to the pathways followed in SARS-COV-2 pathology, like renin-angiotensin system, kidney functions, regulation of blood circulation, blood vessel diameter, etc. Also, in docking studies, the constituents of N. sativa, α-hederin, Thymohydroquinone and Thymoquinone were observed to be efficiently binding to ACE2. Also, the bioactive phytoconstituents are involved in molecular pathways like HIF1, VEGF, IL-17, AGE-RAGE, chemokine and calcium signaling pathways which can be majorly helpful in combating hypoxia and inflammation caused due to compromised immune system and oxidative stress. Therefore, N. sativa standardized extract having the above phytoconstituents could be useful in COVID-19 and hence opens a new treatment line.

Acknowledgements

We would like to acknowledge Dr. Ashok K. Chauhan, Founder President, Amity University Uttar Pradesh Noida for constant motivation and support. The authors are really thankful to the team from Schrodinger consisting of Dr. Prajwal Nandekar and Dr. Kishore for providing the access to the software and constant support which has enabled us to complete the study in this lockdown period away from our lab.

Disclosure statement

There is no conflict of interests to declare.

Author contributions

D.P.K and R.J.M designed the concept of study. R.J.M performed computational analysis and D.P.K, R.J.M and N.S analysed the data. R.J.M, N.S, N.D and S.S wrote the manuscript. D.P.K and R.J.M reviewed and finalized the manuscript.

Additional information

Funding

The work was not funded by any organization.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.