378
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Unravelling the molecular basis of AM-6494 high potency at BACE1 in Alzheimer’s disease: an integrated dynamic interaction investigation

, , , &
Pages 5253-5265 | Received 28 Oct 2020, Accepted 21 Dec 2020, Published online: 07 Jan 2021
 

Abstract

β-amyloid precursor protein cleaving enzyme1 (BACE1) has prominently been an important drug design target implicated in Alzheimer’s disease pathway. The failure rate of most of the already tested drugs at different clinical phases remains a major concern. Recently, AM-6494 was reported as a novel potent, highly selective, and orally effective inhibitor against BACE1. AM-6494 displayed no alteration of skin/fur colour in animal studies, an adverse effect common to previous BACE1 inhibitors. However, the atomistic molecular mechanism of BACE1 inhibition by AM-6494 remains unclear. To elucidate the binding mechanism of AM-6494 relative to umibecestat (CNP-520) as well as the structural changes when bound to BACE1, advanced computational techniques such as accelerated MD simulation and principal component analysis have been utilised. The results demonstrated higher binding affinity of AM-6494 at BACE1 with van der Waals as dominant energy contributor compared to umibecestat. Conformational monitoring of the β-hairpin flap covering the active site revealed an effective flap closure when bound with AM-6494 compared to CNP-520, which predominantly alternates between semi-open and closed conformations. The observed effective flap closure of AM-6494 explains its higher inhibitory power towards BACE1. Besides the catalytic Asp32/228 dyad, Tyr14, Leu30, Tyr71 and Gly230 represent critical residues in the potency of these inhibitors at BACE1 binding interface. The findings highlighted in this research provide a basis to explain AM-6494 high inhibitory potency and might assist in the design of new inhibitors with improved selectivity and potency for BACE1.

Graphical Abstract

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare no conflicts of interest in this work.

Additional information

Funding

This research was supported by the Centre for High-Performance Computing (http://www.chpc.ac.za) with computational resources, including the licence for Schrodinger Suite.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.