122
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Insight into the binding mechanism of macrolide antibiotic; erythromycin to calf thymus DNA by multispectroscopic and computational approaches

&
Pages 6171-6182 | Received 28 Oct 2020, Accepted 13 Jan 2021, Published online: 02 Feb 2021
 

Abstract

In the present study, the interactions between Erythromycin drug and calf thymus deoxyribonucleic acid (ct-DNA) were explored by multi spectroscopic techniques (UV-Visible, fluorescence, circular dichroism spectroscopies), viscosity, molecular docking simulation, and atomic force microscopy (AFM). In addition, the values of binding constant were calculated by the UV-Visible and fluorescence spectroscopy. Competitive fluorescence study with methylene blue (MB), acridine orange (AO), and Hoechst 33258 were indicated that the Erythromycin drug could displace the DNA-bound Hoechst, which displays the strong competition of Erythromycin with Hoechst to interact with the groove binding site of DNA. In addition, the observed complexes in AFM analysis comprise the chains of ct-DNA and Erythromycin with an average size of 314.05 nm. The results of thermodynamic parameter calculations (ΔS° = −332.103 ± 14 J mol−1 K−1 and ΔH° = −115.839 ± 0.02 kJ mol−1) approved the critical role of van der Waals forces and hydrogen bonds in the complexation of Erythromycin-DNA. Fluorescence spectroscopy results demonstrate the existence of a static enhancement mechanism in the interaction of Erythromycin-DNA. According to the obtained results, Erythromycin drug interacts with the major groove of ct-DNA. These consequences were further supported by the molecular docking study, and it could be determined that DNA-Erythromycin docked model was in a rough correlation with our experimental results.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Financial support from the Razi University research center is gratefully acknowledged.

Disclosure statement

The authors declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.