316
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Repurposing of FDA approved drugs and their validation against potential drug targets for Salmonella enterica through molecular dynamics simulation

, &
Pages 6255-6271 | Received 30 Oct 2020, Accepted 19 Jan 2021, Published online: 02 Feb 2021
 

Abstract

Salmonella is a widely distributed pathogen causing infection of intestinal tract, typhoid, and paratyphoid fever. Number of drugs was developed against salmonella, but in the last few decades due to the emergence of drug resistant strains, most of these drugs became dormant. As a result Salmonellosis emerges as a trivial cause of human mortality worldwide; therefore, there is an urgent need for unexploited drug targets and drugs to treat Salmonellosis. As development of new drug molecules is very time consuming and costly, drug repurposing is in consideration as a better alternative. With the aim to identify a new drug molecule against the Salmonella through repurposing approach, we utilized 14 well reported druggable targets known to play a vital role in the life cycle of pathogens. These targets were used to screen DrugBank and got 53 FDA approved drugs against them. To find the interaction between considered target proteins and screened drugs, molecular docking was performed. Fourteen docked drug-target complexes with reasonable binding affinities were subjected to Molecular Dynamics Simulation (MDS) at 150 ns, using Amber18. At the end MMPBSA and MMGBSA calculations were performed for all stable complexes and finally, got 3 precise and favourable complexes, i.e. ArcB-Cefpiramide, MrcB-Cefoperazone, and PhoQ-Carindacillin. Rigorous structural and energetic analysis for these complexes validates the potential of drug molecules to act as therapeutic drugs against Salmonella enterica. With this study we hypothesize that the drugs Cefpiramide (DB00430), Cefoperazone (DB01329) and Carindacillin (DB09319) will be the good repurposed-drugs for the treatment of Salmonellosis.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors are thankful to Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio).

Disclosure statement

All the authors collectively declare that there is no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.