436
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Insilico screening of therapeutic potentials from Strychnos nux-vomica against the dimeric main protease (Mpro) structure of SARS-CoV-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7796-7814 | Received 26 Oct 2020, Accepted 06 Mar 2021, Published online: 24 Mar 2021
 

Abstract

The novel coronavirus also referred to as SARS-CoV-2 causes COVID-19 and became global epidemic since its initial outbreak in Wuhan, China, in December 2019. Research efforts are still been endeavoured towards discovering/designing of potential drugs and vaccines against this virus. In the present studies, we have contributed to the development of a drug based on natural products to combat the newly emerged and life-threatening disease. The main protease (MPro) of SARS-CoV-2 is a homodimer and a key component involved in viral replication, and is considered as a prime target for anti-SARS-CoV-2 drug development. Literature survey revealed that the phytochemicals present in Strychnos nux-vomica possess several therapeutic activities. Initially, in the light of drug likeness laws, the ligand library of phytoconstituents was subjected to drug likeness analysis. The resulting compounds were taken to binding site-specific consensus-based molecular docking studies and the results were compared with the positive control drug, lopinavir, which is a main protease inhibitor. The top compounds were tested for ADME-Tox properties and antiviral activity. Further molecular dynamics simulations and MM-PBSA-based binding affinity estimation were carried out for top two lead compounds’ complexes along with the apo form of main protease and positive control drug lopinavir complex, and the results were comparatively analysed. The results revealed that the two analogues of same scaffold, namely demethoxyguiaflavine and strychnoflavine, have potential against Mpro and can be validated through clinical studies.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors thank the management, Ramaiah Institute of Technology, for providing necessary computational facilities and support.

Conflict of interest

The authors declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.