149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of selective LdDHFR inhibitors using quantum chemical and molecular modeling approach

ORCID Icon, &
Pages 8687-8695 | Received 30 Dec 2020, Accepted 05 Apr 2021, Published online: 27 Apr 2021
 

Abstract

Among the various known targets for the treatment of Leishmaniasis, dihydrofolate reductase (DHFR) is an essential target which plays an important role in the folate metabolic pathway. In the current study, pharmacoinformatics approaches including quantum chemistry methods, molecular docking and molecular dynamics simulations have been utilized to identify selective Leishmania donovani DHFR (LdDHFR) inhibitors. Initially, for the design of new LdDHFR inhibitors, a virtual combinatorial library was created by considering various head groups (scaffolds), linkers and tail groups. The scaffolds utilized in the library design were selected on the basis of their proton affinity (PA) estimated using quantum chemical methods, required to make a strong H-bond interaction with negatively charged LdDHFR active site. Later on, molecular docking-based virtual screening was performed to screen the designed library. Selectivity of the chosen hits toward the LdDHFR was established through re-docking in the human DHFR enzyme (HsDHFR). Best five hits were subjected to molecular dynamics (MD) simulations to validate their selectivity as well as stability in LdDHFR. Out of the five hits, four were found to be energetically more favorable and promising for selective binding toward LdDHFR in comparison to HsDHFR.

Communicated by Ramaswamy H. Sarma

Acknowledgements

VKS thanks NIPER S.A.S. Nagar for providing research facilities. PVB thanks Department of Biotechnology (DBT) for financial assistance. DK acknowledges financial support from the INSPIRE program of Department of Science and Technology (DST), New Delhi.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.