543
Views
36
CrossRef citations to date
0
Altmetric
Research Articles

In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins

, , , ORCID Icon, , , & show all
Pages 8866-8893 | Received 09 Jan 2021, Accepted 11 Apr 2021, Published online: 30 Apr 2021
 

Abstract

The global prevalence of COVID-19 disease and the overwhelming increase in death toll urge scientists to discover new effective drugs. Although the drug discovery process is a challenging and time-consuming, fortunately, the plant kingdom was found to have many active therapeutics possessing broad-spectrum antiviral activity including those candidates active against severe acute respiratory syndrome coronaviruses (SARS-CoV). Herein, nine traditional Chinese medicinal plant constituents from different origins (Glycyrrhizin 1, Lycorine 2, Puerarin 3, Daidzein 4, Daidzin 5, Salvianolic acid B 6, Dihydrotanshinone I 7, Tanshinone I 8, Tanshinone IIa 9) previously reported to exhibit antiviral activity against SARS-CoV were virtually screened in silico (molecular docking) as potential inhibitors of SARS-CoV-2 target proteins. The tested medicinal plant compounds were in silico screened for their activity against two key SARS-CoV-2 target proteins; 3CLpro, and Spike binding-domain proteins. Among the tested medicinal plant compounds, Salvianolic acid B 6 (Sal-B) showed promising binding affinities against the two specified SARS-CoV-2 target proteins compared to the reference standards used. Hence molecular dynamics simulations followed by calculating the free-binding energy were carried out for Sal-B providing information on its affinity, stability, and thermodynamic behavior within the two SARS-CoV-2 target proteins as well as key ligand-protein binding aspects. Besides, the quantum mechanical calculations showed that Sal-B can adopt different conformations due to the existence of various rotatable bonds. Therefore, the enhanced antiviral activity of Sal-B among other studied compounds can be also attributed to the structural flexibility of Sal-B. Our study gives an explanation of the structure activity relationship required for targeting SARS-CoV-2 3CLpro and Spike proteins and also facilitates the future design and synthesis of new potential drugs exhibiting better affinity and specificity. Besides, an ADME study was carried out on screened compounds and reference controls revealing their pharmacokinetics properties.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors acknowledge Swinburne University of Technology, Melbourne, Australia, for using Swinburne’s supercomputing facilities to perform the Quantum mechanics calculations details. The MD simulations within this work were performed at King Abdulaziz University’s High Performance Computing Center (Aziz Supercomputer) (http://hpc.kau.edu.sa)”, Jeddah, Saudi Arabia and the authors, therefore, acknowledge with thanks the center for technical support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.