124
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In vitro and computational studies on the antiglycation activity of compounds isolated from antidiabetic Tetracera alnifolia stem bark

, , , , , & show all
Pages 9742-9751 | Received 07 Oct 2020, Accepted 20 May 2021, Published online: 07 Jun 2021
 

Abstract

The continuous search for new compounds in natural-based plants is a promising strategy for the prevention of diseases. This work examined antiglycation activity compounds isolated from the antidiabetic extract of T. alnifolia stem bark via in vitro and computational [molecular dynamics (MD)] approach. Phytochemical investigation of ethyl acetate fraction and the application of spectroscopic methods led to the isolation and elucidation of 3 compounds: quercetin (1), kaempferol (2), and gallic acid (3). Compounds 1, 2 and 3 were then screened for antioxidant and antiglycation activities. Results show that the ethanol extract of T. alnifolia demonstrated good antioxidant activity compared to the standard gallic acid. There was a significant reduction in fasting blood glucose level progressively in diabetic rats, for 21 days compared to diabetic control. Consequently, the antiglycation activity of ethyl acetate fraction had the highest antiglycation activities, followed by dichloromethane (DCM) fraction. Compounds isolated from ethyl acetate fraction, exhibited the highest antiglycation effect for kaempferol followed by quercetin, while gallic acid had the least antiglycation effect. The root mean square of deviation (RMSD) and MM/GBSA energies obtained from molecular dynamics agree with the in vitro antiglycation activity with the sequence of structural stability in the order; kaempferol > quercetin > gallic acid. Therefore, findings from these results suggest that compounds isolated from T. alnifolia possess antiglycation activity.

Communicated by Ramaswamy H. Sarma

Acknowledgements

K.O is grateful to ICCBS-TWAS postgraduate for awarding the fellowship. C.U appreciates CHPC (www.chpc.ac.za) for computational resources.

Disclosure statement

The authors declared no conflict of interest

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.