1,160
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

The molecular dynamics of possible inhibitors for SARS-CoV-2

ORCID Icon, , , &
Pages 10023-10032 | Received 27 Sep 2020, Accepted 28 May 2021, Published online: 06 Jul 2021
 

Abstract

The novel coronavirus SARS-CoV-2, responsible for the present COVID-19 global pandemic, is known to bind to the angiotensin converting enzyme-2 (ACE2) receptor in human cells. A possible treatment of COVID-19 could involve blocking ACE2 and/or disabling the spike protein on the virus. Here, molecular dynamics simulations were performed to test the binding affinities of nine candidate compounds. Of these, three drugs showed significant therapeutic potential that warrant further investigation: SN35563, a ketamine ester analogue, was found to bind strongly to the ACE2 receptor but weakly within the spike receptor-binding domain (RBD); in contrast, arbidol and hydroxychloroquine bound preferentially with the spike RBD rather than ACE2. A fourth drug, remdesivir, bound approximately equally to both the ACE2 and viral spike RBD, thus potentially increasing risk of viral infection by bringing the spike protein into closer proximity to the ACE2 receptor. We suggest more experimental investigations to test that SN35563—in combination with arbidol or hydroxychloroquine—might act synergistically to block viral cell entry by providing therapeutic blockade of the host ACE2 simultaneous with reduction of viral spike receptor-binding; and that this combination therapy would allow the use of smaller doses of each drug.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The simulations were performed using super-computing facilities available at the University of Waikato and also through the New Zealand eScience Infrastructure (NeSI).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.