130
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A comparative study of different docking methodologies to assess the protein–ligand interaction for the E. coli MurB enzyme

, &
Pages 11229-11238 | Received 06 May 2020, Accepted 12 Jul 2021, Published online: 29 Jul 2021
 

Abstract

We have investigated the active site of E. coli MurB using the Quantum Mechanics/Molecular Mechanics (QM/MM) methodology. The docking of three novel series of 4-thiazolidinone derivatives has been performed using two methods: rigid docking and flexible docking (Induced Fit Docking: IFD). The results have been compared to understand the conformational aspects of the enzyme. The docking results from rigid docking show that the ligands with highly negative ΔGbind have poor docking scores. In addition, the value of the regression coefficient (R) obtained on correlating the ΔGbind and the experimental pMIC values is insignificant. On keeping the protein flexible, there is a remarkable improvement in both the docking score and ΔGbind, along with a good value of R (0.64). Two important residues, Tyr254 and Try190 are found to be highly displaced during the flexible docking and hence their role in effective ligand binding has been confirmed. Thus, comparing the two methodologies, IFD has emerged as the more appropriate one for studying the E. coli MurB enzyme. To further substantiate the findings, MD studies over a time period of 20 ns have been performed on the IFD-LIII j and Rigid/XP-LIII j complexes and the results shows the former complex to be more stable, with lower average RMSD and higher average ΔGbind.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors Sonam Nirwan and Varun Chahal acknowledge financial assistance in the form of Senior Research Fellowships from the University Grants Commission (UGC) and the Council of Scientific and Industrial Research (CSIR), respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.