130
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of surfactants on biomolecular conjugation of magnetic nanoparticles

, , ORCID Icon & ORCID Icon
Pages 12895-12907 | Received 20 Apr 2021, Accepted 02 Sep 2021, Published online: 20 Sep 2021
 

Abstract

Here, we report the physicochemical interaction among iron oxide nanoparticles (MNPs) and essential biomolecules, namely, serum albumin (BSA, HSA), collagen and deoxyribonucleic acid (DNA) in the presence of various cationic, anionic and non-ionic surfactants. Iron oxide nanoparticles are synthesized by the wet chemical process and are characterized by X-ray powder diffraction analysis (XRD), Fourier transform infrared spectroscopic, UV-Vis spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping studies . The conjugation of MNPs protein was analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism technique and gel electrophoresis. The spectroscopic investigation illustrates the surfactant-dependent binding between MNPs and protein. Gel electrophoresis in the absence and presence of MNPs-surfactant systems has been used to study the impact on DNA structure. It was found that Tween 80 imparts better stability as well as biocompatibility to the synthesized MNPs. The findings offer extensive information on the influence of various surfactant coatings on MNP surfaces and their influence on vital biomolecules, making it useful for designing MNPs for biological applications.

Communicated by Ramaswamy H. Sarma

Acknowledgment

The authors thank SAIF Department, Punjab University, for SEM images and the EDAX spectrum. The authors acknowledge the financial support of the University Grant Commission in the terms of Non-NET Fellowship.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors acknowledge the financial support of the University Grant Commission in the terms of Non-NET Fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.