354
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the potential of withanolides as Phosphodiesterase-4 (PDE4D) inhibitors

, &
Pages 2108-2117 | Received 16 Nov 2021, Accepted 07 Jan 2022, Published online: 21 Jan 2022
 

Abstract

Medicinal herbs have been used as traditional medicines for centuries. The molecular mechanism of action of their bioactive molecules against various diseases or therapeutic targets is still being explored. Here, the active compounds (withanolides) of a well-known Indian medicinal herb, Ashwagandha (Withania somnifera), have been studied for their most potential therapeutic targets and their mechanism of action using ligand-based screening and receptor-based approaches. Ligand-based screening predicted the six top therapeutic targets, namely, Protein kinase C alpha (PRKCA), Protein kinase C delta (PRKCD), Protein kinase C epsilon (PRKCE), Androgenic Receptor (AR), Cycloxygenase-2 (PTGS-2) and Phosphodiesterase-4D (PDE4D). Further, when these predictions were validated using receptor-based studies, i.e. molecular docking, molecular dynamics simulation and free energy calculations, it was found that PDE4D was the most potent target for four withanolides, namely, Withaferin-A, 17-Hydroxywithaferin-A, 27-Hydroxywithanone and Withanolide-R. These compounds had a better binding affinity and similar interactions as that of an already known inhibitor (Zardaverine) of PDE4D. These results warrant further in-vitro and in-vivo investigations to examine their therapeutic potential as an inhibitor of PDE4D.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare no conflict of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

Authors’ contribution

A.R. contributed to experiments and manuscript writing. V.K. contributed to conception, experiments and manuscript writing. D.S. contributed to conception, design, manuscript writing and resources. All authors have read and agreed to the published version of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.