251
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Simulation analysis of selective alanine mutation effect on stability of human prion protein

&
Pages 2619-2629 | Received 10 Sep 2021, Accepted 26 Jan 2022, Published online: 18 Feb 2022
 

Abstract

Prion diseases are neurodegenerative disorders caused by spongiform degeneration of the brain. Understanding the fundamental mechanism of prion protein aggregation caused by mutations is very crucial to resolve the pathology of prion diseases. To help understand the roles of individual residues on the stability of the human prion protein, the computational method of free energy simulations based on atomistic molecular dynamics trajectories is applied to Phe175 → Ala, Val180 → Ala, and Val209 → Ala mutations of the human prion protein. The simulations show that all three alanine mutations destabilize the human prion protein. The calculated free energy change differences, ΔΔG, for the Phe175 → Ala, Val180 → Ala, and Val209 → Ala mutations are in good agreement with the experimental values. The significant destabilizing effects on the mutants relative to the wild-type protein arise from van der Waals terms. Furthermore, our free energy decomposition analysis shows that the major contribution to destabilizing the V180A and V209A mutants relative to the wild-type protein is originated from van der Waals interactions from residues near the mutation sites. In contrast, the contribution to destabilizing the F175A mutant is mainly caused by van der Waals interactions from residues near and far away from the mutation site. Our results show that the free energy simulation with a thermodynamic integration approach for selected alanine scanning mutations is beneficial for understanding the detailed mechanism of human prion protein destabilization, specific residues' role, and the hydrophobic effect on protein stability.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We sincerely thank Center for Research Computing at the University of Kansas for making available computer resources used in this work.

Disclosure statement

The authors have no conflict of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.