208
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Single-walled silicon nanotube as an exceptional candidate to eliminate SARS-CoV-2: a theoretical study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3042-3051 | Received 30 Nov 2021, Accepted 17 Feb 2022, Published online: 26 Feb 2022
 

Abstract

In this work, computational chemistry methods were used to study a silicon nanotube (Si192H16) as possible virucidal activity against SARS-CoV-2. This virus is responsible for the COVID-19 disease. DFT calculations showed that the structural parameters of the Si192H16 nanotube are in agreement with the theoretical/experimental parameters reported in the literature. The low energy gap value (0.29 eV) shows that this nanotube is a semiconductor and exhibits high reactivity. For nanomaterials to be used as virucides, they need to have high reactivity and high inhibition constant values. Therefore, the adsorption of 3O2 and H2O on the surface of Si192H16 (Si192H16@O2-H2O) was performed. In this process, the formation and activation energies were −51.63 and 16.62 kcal/mol, respectively. Molecular docking calculations showed that the Si192H16 and Si192H16@O2H-OH nanotubes bind favorably on the receptor-binding domain of the SARS-CoV-2 spike protein with binding energy of −11.83 (Ki = 2.13 nM) and −11.13 (Ki = 6.99 nM) kcal/mol, respectively. Overall, the results obtained herein indicate that the Si192H16 nanotube is a potential candidate to be used against COVID-19 from reactivity process and/or steric impediment in the S-protein.

Communicated by Ramaswamy H. Sarma

Acknowledgements

This research was carried out with the support of the Center for High Performance Computing at the State University of Goiás.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Jeziel Rodrigues dos Santos thanks CAPES for providing a research grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.