209
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico insights into the dimer structure and deiodinase activity of type III iodothyronine deiodinase from bioinformatics, molecular dynamics simulations, and QM/MM calculations

, &
Pages 4819-4829 | Received 18 Jan 2022, Accepted 27 Apr 2022, Published online: 17 May 2022
 

Abstract

The homodimeric family of iodothyronine deiodinases (Dios) regioselectively remove iodine from thyroid hormones. Currently, structural data has only been reported for the monomer of the mus type III thioredoxin (Trx) fold catalytic domain (Dio3Trx), but the mode of dimerization has not yet been determined. Various groups have proposed dimer structures that are similar to the A-type and B-type dimerization modes of peroxiredoxins. Computational methods are used to compare the sequence of Dio3Trx to related proteins known to form A-type and B-type dimers. Sequence analysis and in silico protein-protein docking methods suggest that Dio3Trx is more consistent with proteins that adopt B-type dimerization. Molecular dynamics (MD) simulations of the refined Dio3Trx dimer constructed using the SymmDock and GalaxyRefineComplex databases indicate stable dimer formation along the β4α3 interface consistent with other Trx fold B-type dimers. Free energy calculations show that the dimer is stabilized by interdimer interactions between the β-sheets and α-helices. A comparison of MD simulations of the apo and thyroxine-bound dimers suggests that the active site binding pocket is not affected by dimerization. Determination of the transition state for deiodination of thyroxine from the monomer structure using QM/MM methods provides an activation barrier consistent with previous small model DFT studies.

Communicated by Ramaswamy H. Sarma

Acknowledgments

Calculations were performed on high performance clusters operated by ODU Information Technology Services.

Additional information

Funding

This research was supported by the National Institutes of Health (R15 GM119063-01A1).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.