568
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of new small molecule monoamine oxidase-B inhibitors through pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation studies

ORCID Icon & ORCID Icon
Pages 6789-6810 | Received 25 May 2022, Accepted 05 Aug 2022, Published online: 18 Aug 2022
 

Abstract

The discovery of a safe and efficacious drug is a complex, time-consuming, and expensive process. Computational methodologies driven by cheminformatics tools play a central role in the high-throughput lead discovery and optimization process especially when the structure of the biological target is known. Monoamine oxidases are the membrane-bound FAD-containing enzymes and the isoform monoamine oxidase-B (MAO-B) is an attractive target for treating diseases like Alzheimer’s disease, Parkinson’s disease, glioma, etc. In the current study, we have used a pharmacophore-based virtual screening technique for the identification of new small molecule MAO-B inhibitors. Safinamide was used for building a pharmacophore model and the developed model was used to probe the ZINC database for potential hits. The obtained hits were filtered against drug-likeness and PAINS. Out of the hit’s library, two compounds ZINC02181408, ZINC08853942 (most active), and ZINC53327382 (least active) were further subjected to molecular docking and dynamics simulation studies to assess their virtual binding affinities and stability of the resultant protein–ligand complex. The docking studies revealed that active ligands were well accommodated within the active site of MAO-B and interacted with both substrate and entrance cavity residues. MD simulation studies unveiled additional hydrogen bond interactions with the substrate cavity residues, Tyr398 and Tyr435 that are crucial for the catalytic role of MAO-B. Moreover, the predicted ADMET parameters suggest that the compounds ZINC08853942 and ZINC02181408 are suitable for CNS penetration. Thus, the attempted computational campaign yielded two potential MAO-B inhibitors that merit further experimental investigation.

Communicated by Ramaswamy H. Sarma

Acknowledgments

The first author (SK) is thankful to the Indian Institute of Technology (BHU) Varanasi, for providing a Teaching Assistantship. The support and the resources provided by ‘PARAM Shivay Facility’ under the National Supercomputing Mission, Government of India at the Indian Institute of Technology (BHU), Varanasi are gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was supported by the Ministry of Education (erstwhile MHRD), Government of India, New Delhi (Grant number: STARS 1/583).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.