177
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of a promising inhibitor from Illicium verum (star anise) against the main protease of SARS-CoV-2: insights from the computational study

, , , , , & ORCID Icon show all
Pages 6866-6882 | Received 30 Nov 2021, Accepted 08 Aug 2022, Published online: 18 Aug 2022
 

Abstract

SARS-CoV-2, the causing agent of coronavirus disease (COVID-19), first broke out in Wuhan and rapidly spread worldwide, resulting in a global health emergency. The lack of specific drugs against the coronavirus has made its spread challenging to control. The main protease (Mpro) is a key enzyme of SARS-CoV-2 used as a key target in drug discovery against the coronavirus. Medicines derived from plant phytoconstituents have been widely exploited to treat various diseases. The present study has evaluated the potential of Illicium verum (star anise) phytoconstituents against Mpro by implementing a computational approach. We performed molecular docking and molecular dynamics simulation study with a set of 60 compounds to identify their potential to inhibit the main protease (Mpro) of SARS-CoV-2. DFT study and post dynamics free energy calculations were also performed to strengthen the findings. The identified four compounds by docking study exhibited the highest potential compared to other selected phytoconstituents. Further, density functional theory (DFT) calculation, molecular dynamics simulation and post dynamics MM-GBSA energy calculation predicted Verimol-G as a potential compound, which formed stable interactions through the catalytic dyad residues. The HOMO orbital energy (-0.250038) from DFT and the post dynamics binding free energy calculation (-73.33 Kcal/mol) correlate, suggesting Verimol-G is the best inhibitor compared to the other phytoconstituents. This compound also complies with the ADME properties of drug likeliness. Thus, based on a computational study, we suggest that Verimol G may be developed as a potential inhibitor against the main protease to combat COVID-19.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.