373
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of tools for RNA secondary structure prediction and extraction: a final-user perspective

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6917-6936 | Received 04 Mar 2022, Accepted 09 Aug 2022, Published online: 15 Sep 2022
 

Abstract

The study of RNA structure is fundamental to clarify the RNA molecular functioning. The flexible RNA nature, the huge number of expressed RNAs, and the variety of functions make it challenging to obtain a quantity of structural information comparable to what is already available for proteins. The in silico prediction of RNA 3D structures is of particular relevance, to understand the fundamental features of the structure-function relationship, because the 3D structure drives the molecular interaction with DNA or protein complexes. The quality of the prediction of the RNA 3D structure is determined by the knowledge of a properly predicted or measured secondary structure. In this paper, we comparatively evaluate computational tools to model RNA secondary structure, focusing our investigation, among the dozens of methods in literature, on tools which are freely available and implemented in web-server versions, providing a more direct access to the final users, not necessarily bioinformatics experts. Our focus is on assessing performances for long sequences, with the final aim of selecting best methods for perspective lncRNAs investigation. Indeed, among RNAs, the non-coding and long non-coding RNAs (lncRNAs, with sequence length larger than 200 nts) assume special relevance, due to their function in regulatory mechanisms, which is still largely unexplored in the case of lncRNAs. As lncRNA experimental structures are at present missing, other families of large RNAs are here used as test cases, to establish the reliability of predictive bioinformatics tools and their perspective applicability to the case of lncRNAs.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the International Center for Relativistic Astrophysics Network (ICRANet).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.