201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioinformatics analysis of Muscovy duck parvovirus REP and VP1 proteins

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7174-7189 | Received 09 May 2022, Accepted 20 Aug 2022, Published online: 06 Sep 2022
 

Abstract

This article was aimed at analyzing the sequence, structure, and function of the two Muscovy duck parvovirus proteins, including REP and VP1. The antigenicity, physical and chemical properties, transmembrane regions, phosphorylation sites, glycosylation sites, three-dimensional structure, and linear epitope of VP1 and REP were predicted and analyzed through bioinformatics methods. A multi-epitope vaccine was also constructed based on the screened epitopes, and the vaccine was characterized, modeled, molecularly docked and molecularly cloned. The epitopes were screened according to the criteria of antigenicity, non-allergenicity and non-toxicity, and 12 epitope fragments were obtained. The B cell epitopes were analyzed according to four scales: β-turn, hydrophilicity, surface accessibility and antigenicity. Combined with the epitope prediction results based on structure, the final epitope prediction results were obtained. The multi-epitope vaccine used an EAAAK-linked adjuvant, a GPGPG-linked T-cell epitope, and a KK-linked B-cell epitope. The analysis showed that the vaccine was stable hydrophilic, antigenic, conserved and non-allergenic. Based on molecular docking it was shown that good interactions between the vaccine and the immune receptor were generated and were essential to generate an immune response. The final vaccine was reverse translated into cDNA and the DNA vaccine was designed by codon optimization and molecular cloning. Further trials are still needed to demonstrate the immunogenicity and other aspects of vaccine efficacy.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that they have no conflicts of interest.

Additional information

Funding

This work was supported by the Natural Science Foundation of Heilongjiang Province under Grant No. LH2020C110 and Heilongjiang Provincial Education Department under Grant No. YSTSXK201881.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.