172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Repurposing antibiotics as potent multi-drug candidates for SARS-CoV-2 delta and omicron variants: molecular docking and dynamics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10377-10387 | Received 22 Jun 2022, Accepted 07 Dec 2022, Published online: 21 Dec 2022
 

Abstract

There is a daunting public health emergency due to the emergence and rapid global spread of the new omicron variants of SARS-CoV-2. The variants differ in many characteristics, such as transmissibility, antigenicity and the immune system of the human hosts’ shifting responses. This change in characteristics raises concern, as it leads to unknown consequences and also raises doubts about the efficacy of the currently available vaccines. As of March 2022, there are five variants of SARS-CoV-2 disseminating: the alpha, the beta, the gamma, the delta and the omicron variant. The omicron variant has more than 30 mutations on the spike protein, which is used by the virus to enter the host cell and is also used as a target for the vaccines. In this work, we studied the possible anti-COVID-19 effect of two molecules by molecular docking using Autodock Vina and molecular dynamic simulations using Gromacs 2020 software. We docked amoxicillin and clavulanate to the main protease (Mpro), the RNA-dependent RNA polymerase (RdRp) and the spike protein receptor-binding domain (SRBD) of the wild type with the two variants (delta and omicron) of SARS-CoV-2. The docking results show that the ligands bound tightly with the SRBD of the omicron variant, while the dynamic simulation revealed the ability of amoxicillin to bind to the SRBD of both variants’ delta and omicron. The high number of mutations that occurred in both variants increases the affinity of amoxicillin towards them.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare no conflict of interest, financial or otherwise.

Additional information

Funding

S. Goumri-Said thanks the office of research at Alfaisal University in Saudi Arabia for funding this research work through internal Project Number 22413.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.