442
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations

, , &
Pages 10774-10784 | Received 22 Jul 2022, Accepted 10 Dec 2022, Published online: 02 Jan 2023
 

Abstract

The changes in the SARS-CoV-2 genome have resulted in the emergence of new variants. Some of the variants have been classified as variants of concern (VOC). These strains have higher transmission rate and improved fitness. One of the prevalent were the Omicron variant. Unlike previous VOCs, the Omicron possesses fifteen mutations on the spike protein's receptor binding domain (RBD). The modifications of spike protein's key amino acid residues facilitate the virus' binding capability against ACE2, resulting in an increase in the infectiousness of Omicron variant. Consequently, investigating the prevention and treatment of the Omicron variant is crucial. In the present study, we aim to explore the binding capacity of twenty-two bacteriocins derived from Lactic Acid Bacteria (LAB) against the Omicron variant by using protein-peptidedocking and molecular dynamics (MD) simulations. The Omicron variant RBD was prepared by introducing fifteen mutations using PyMol. The protein-peptide complexes were obtained using HADDOCK v2.4 docking webserver. Top scoring complexes obtained from HADDOCK webserver were retrieved and submitted to the PRODIGY server for the prediction of binding energies. RBD-bacteriocin complexes were subjected to MD simulations. We discovered promising peptide-based therapeutic candidates for the inhibition of Omicron variant for example Salivaricin B, Pediocin PA 1, Plantaricin W, Lactococcin mmfii and Enterocin A. The lead bacteriocins, except Enterocin A, are biosynthesized by food-grade lactic acid bacteria. Our study puts forth a preliminary information regarding potential utilization of food-grade LAB-derived bacteriocins, particularly Salivaricin B and Pediocin PA 1, for Covid-19 treatment and prophylaxis.

Communicated by Ramaswamy H. Sarma

Acknowledgement

The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance andGrid Computing Center (TRUBA resources). We would like to thank Mr Ismail Gumustop for his excellent support during formatting of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.