260
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The pathogenic effect of SNPs on structure and function of human TLR4 using a computational approach

, ORCID Icon &
Pages 12387-12400 | Received 24 Sep 2022, Accepted 03 Jan 2023, Published online: 17 Jan 2023
 

Abstract

The human toll-like receptor (hTLR) 4 single nucleotide polymorphisms (SNPs) are interconnected with cancer, multiple genetic disorders and other immune-related diseases. The detrimental effect of SNPs in hTLR4 with respect to structure and function has not been explored in depth. The present study concatenates the biological consequences of the SNPs along with structural modifications predicted at the hTLR4 gene. A total of 7910 SNPs of hTLR4 were screened, and 21 damage-causing SNPs were identified. Out of 21, seven are present in the extracellular region, of which three were detected as deleterious and the fourth one as moderate. These three mutations are located in a highly conserved region and influence conformational change. The change leads to the widening of the Leucine-rich repeat (LRR) arc to a maximum of 16.9 Å and a minimum of 8.7 Å. Expansion/shortening of LRR arc, never discussed before, would cause loss of myeloid differentiation factor 2 (MD-2) interactions in the interior and diminish lipopolysaccharide (LPS) responses. Similarly, in all mutant structures, the binding region for HMGB1 and LPS is deflating or in an unsupportive conformation. Thus, SNPs affect the regular signaling cascade and might result in human sepsis, genetic disorders, cancer and other immunological related diseases.

Communicated by Ramaswamy H. Sarma

Authors’ contributions

PP and BSI framed the study. BSI designed and PP performed the experiments. BSI, PP and AAA analyzed the results. BSI, PP and AAA wrote the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Abdul Ajees Abdul Salam acknowledges the MAHE intramural grant’s research grant (MAHE/DREG/PhD/IMF/2019).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.