336
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural dynamics and susceptibility of isobutylamido thiazolyl resorcinol (ThiamidolTM) against human and mushroom tyrosinases

, , , &
Pages 11810-11817 | Received 23 Nov 2022, Accepted 23 Dec 2022, Published online: 16 Jan 2023
 

Abstract

Tyrosinase, a key enzyme catalyzing a rate-limiting step of the melanin production, has been the most promising target for suppressing hyperpigmentation. Although a number of tyrosinase inhibitors have been developed, most of those lack clinical efficacy as they were identified from using mushroom tyrosinase (mTyr) as the target. Previous study revealed that the inhibitory effect of isobutylamido thiazolyl resorcinol (ThiamidolTM) on human tyrosinase (hTyr) is ∼100 times higher than that on mTyr. In the present study, we aimed to investigate the structural dynamics and susceptibility of ThiamidolTM against hTyr and mTyr at the atomic level using molecular docking, molecular dynamics simulation, and free energy calculation based on the molecular mechanics/Poisson-Boltzmann surface area method. The obtained results revealed that the resorcinol moiety of ThiamidolTM was found to be embedded in the catalytic copper center, interacting with H180, H202, H211, F386, and H390 residues of hTyr as well as with F264 residue of mTyr, mostly through van der Waals interactions. However, the number of destabilizing residues was found to be more pronounced in the ThiamidolTM/mTyr complex than the ThiamidolTM/hTyr system, supported by the lower binding affinity of ThiamidolTM/mTyr complex as well as the higher water accessibility and the lower number of atomic contacts at the active site of mTyr. Altogether, the structural and energetic information from this work would be useful for further optimization of more potent human tyrosinase inhibitors based on ThiamidolTM scaffold.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This project is funded by National Research Council of Thailand (NRCT) (grant number N41A640109).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.