247
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An immunoinformatics analysis: design of a multi-epitope vaccine against Cryptosporidium hominis by employing heat shock protein triggers the innate and adaptive immune responses

&
Pages 13563-13579 | Received 09 Jul 2022, Accepted 28 Jan 2023, Published online: 10 Feb 2023
 

Abstract

Cryptosporidium hominis, an anthropologically transferred species in the Cryptosporidium genus, represents many clinical studies in several countries. Its growth in the recent decade is primarily owing to epidemiologic studies. This parasite has complicated life cycles that require differentiation through a variety of phases of development and passage across two or more hosts throughout their lifetimes. As they move from host to host and environment to environment, pathogenic organisms are continually exposed to unexpected changes in the circumstances under which they develop. Heat shock proteins (HSPs) are targets of the host immune response; they are involved in the progression of diseases and play a significant part in this process. It has been discovered that the immunodominant immunogenic antigens in parasite infections HSPs. In this study, we have generated a multi-epitope vaccine against Cryptosporidium hominis (C. hominis) by using heat shock proteins. The epitopes that were selected had a substantial binding affinity for the B- and T-cell reference set of alleles, a high antigenicity score, a nature that was not allergic, a high solubility, non-toxicity and good binders. The epitopes were incorporated into a chimeric vaccine by using appropriate linkers. In order to increase the immunogenicity of the connected epitopes and effectively activate both innate and adaptive immunity, an adjuvant was attached to the epitopes. We have also analyzed the physiochemical characteristics of the vaccine which were satisfactory and then lead to the development of a 3D model. In addition, the binding confirmation of the vaccine to the TLR-4 innate immune receptor was also determined using molecular docking and molecular dynamics (MD) simulation. The results of this simulation show that the vaccine has a strong binding affinity for TLR4, which indicates that the vaccine is highly effective. In general, the vaccine that has been described here has a good potential for inducing protective and targeted immunogenicity, however, this hypothesis is contingent upon more experimental testing.

Communicated by Ramaswamy H. Sarma

Authors’ contributions

N.P. conceived, designed and performed in silico experiments. The draft preparation and writing have been made by N.P. The critical analysis has been made by N.P. and A.K.

Disclosure statement

The authors declare no completing of interest.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.