371
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural, spectroscopic, molecular docking, ADME, molecular dynamics studies of Val-Trp dipeptide

Pages 13873-13890 | Received 16 Nov 2022, Accepted 14 Feb 2023, Published online: 27 Feb 2023
 

Abstract

Hypertension is a significant risk factor for various diseases, especially heart, brain, and kidney diseases. It is known that many peptides have the property of lowering blood pressure and determine as ACE inhibitors. The purpose of this study is to obtain information about the molecular structure of Val-Trp (L-valyl-L-tryptophan), which is one of the antihypertensive peptides, by molecular mechanical, quantum mechanical, and spectroscopic methods (FT-IR and Raman). Also, it is aimed to investigate the interactions of Val-Trp dipeptide with receptors related to hypertension and to determine the pharmacokinetic profile due to the potential of the peptide to be a drug candidate. The peptide structure was optimized by DFT/B3LYP/6-311++G(d,p) basis set, then vibrational wavenumbers, molecular electrostatic potential (MEP), HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital), NBO (natural bond orbital) analyzes were performed. The assignment of fundamental theoretical vibration wavenumbers was carried out with potential energy distribution analysis (PED). After the structural analyzes of the peptide were performed, the interactions of the peptide with Angiotensin-converting enzyme (ACE), Angiotensin II Receptor Type 1 (AT1R) and Renin were investigated by molecular docking study. Then, the molecular dynamic (MD) simulation of the peptide-ACE complex with the best binding affinity in the molecular docking studies was carried out for 50 ns. ADME (absorption, distribution, metabolism, and excretion) analysis of Val-Trp dipeptide was performed. In support of the studies carried out, enlightening information about the feasibility of the antihypertensive drug of Val-Trp dipeptide with the help of the ADME profile was presented to the literature.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Thanks to Assoc. Prof. Serda Kecel Gunduz and the Schrodinger employees for allowing using the MD program with Schrödinger’s Small-Molecule Drug Discovery Suite.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the Scientific Research Project Coordination Unit of Istanbul University [FDK-2018-32253].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.